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Analysis of an intron intervening the SSU rDNA of
Chlorella sp. T-24-5, a photobiont of Paramecium
bursaria
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Kusatsu, Shiga 525-8577, Japan

SUMMARY

The intronic sequence intervening the small subunit ribosomal DNA (SSU rDNA) of Chlorella sp.
T-24-5, an atypical photobiont of Paramecium bursaria was examined. The position of the insertion was
found to be 10 nucleotides upstream from that of a major P. bursaria photobiont, Micractinium reisseri
(S651), and was found to be a novel insertion site (S641; the numbering reflects the homologous position
in the rRNA gene of Escherichia coli: S = SSU rRNA). A secondary structure diagram showed that the
intron is classified as a group I intron (subgroup IC), characterized by an extended P5 helix. Phylogenetic
analyses could not reveal its evolutionary relationships with other introns, but were suggestive of a
monophyletic relationship with introns of some trebouxiophytes. These introns all share the insertion
position S641, and their sequences are extremely conserved and are likely to have spread recently. The
intron of Chlorella sp. T-24-5 had twelve-nucleotide sequence repeats lying at the head of the intron and
after the insertion, which may play a role in intron invasion.
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INTRODUCTION tists because of its observable endosymbiosis. The
symbiotic relationship can be restarted—algae-
The green ciliate Paramecium bursaria removed P. bursaria can absorb and fix algae as
(Ehrenberg) Focker is one of the best-studied pro- new photobionts (Kodama and Fujishima, 2009

and references therein). Despite the ability of P.

bursaria to re-establish symbiosis, the diversity of
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its photobionts is limited. Nearly 50 strains of pho-
tobionts have been genetically identified; however,
most of them belong to either Chlorella variabilis
Shihira et Krauss or Micractinium reisseri Hosh-
ina, Iwataki et Imamura (Chlorellaceae, Tre-
bouxiophyceae) (Linz et al., 1999; Kvitko et al.,
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2001; Hoshina et al., 2004, 2005, 2010; Gaponova
et al., 2007; Summerer et al., 2008; Hoshina and
Imamura, 2008a; Vorobyev et al., 2009; Proschold
etal., 2011).

To determine which photobiont P. bursaria
possesses, algal DNA amplifications directly from
P. bursaria extracts have been introduced
(Hoshina and Imamura, 2009a; Vorobyev et al.,
2009). These methods are based on unique intron
insertions at different sites in the small subunit
ribosomal DNA (SSU rDNA) of these photobi-
onts; polymorphisms in the lengths of PCR prod-
ucts containing (or not containing) these introns
can be a useful tool for symbiont identification
(intron insertion sites, see Hoshina et al., 2010).

Recently, Vorobyev et al. (2009) reported an
atypical photobiont SSU rDNA sequence from P.
bursaria collected from Tajikistan. This sequence
(Chlorella sp. T-24-5, GenBank accession number
EU281549) included an intron at nearly the same
position as in M. reisseri (described as “Northern”
ecotype), but the length and sequence were differ-
ent (Vorobyev et al., 2009). They stated that the
intron sequence did not show any significant simi-
larity to other sequences using a BLAST search for
nucleotide, whereas it was highly similar to the
group I intron intervening the major capsid protein
Vp54 gene (AB006978) of C. variabilis virus
(CvV) under conditions of “somewhat similar se-
quences” in the viral nucleotide database.

Group I introns are a distinct RNA group that
function as enzymes, splicing themselves out of
precursor RNA transcripts and ligating exons. An-
other distinctive characteristic of group I introns is
their mobility. Phylogenetic analyses have indicat-
ed that introns at homologous gene sites are related
(position family), even among distantly related
host organisms. This phenomenon is linked to in-
tron spreading mechanisms (i.e. homing or reverse
splicing). When an intron at a gene locus infects a
different organism, the new intron will be inserted
into the same locus where it was originally located
(for the general characteristics of group I introns,

see Cech, 2002; Haugen et al., 2005; Nielsen and
Johansen, 2009 and the references therein). Group
I introns are classified into subgroups IA through
IE based on their structural diversity and phyloge-
ny, and nuclear encoding introns belong to either
subgroup IC or IE (Cannone et al., 2002).

The photobionts of P. bursaria, C. variabilis
has four subgroup IC and four IE introns and M.
reisseri has two IE introns in their nuclear rDNA.
These introns are interesting for two reasons. First,
some viruses possess group I introns, of which the
only eukaryotic virus is CvV (Zhou et al., 2008).
This virus infects only C. variabilis, which is a
photobiont of P. bursaria. Since their introns are
classified as IC type (like the introns intervening
eukaryotic nuclear rDNA), some researchers have
suggested that viruses play a role in intron transfer
(Yamada et al., 1994; Bhattacharya et al., 1996;
Nishida et al., 1998; Friedl et al., 2000). Second,
subgroup IE introns commonly inserted into C.
variabilis and M. reisseri are monophyletic and
independent from other IE intron lineages. Howev-
er, the insertion positions are straggled in their
rDNA, and this cannot be explained by existing
intron transmission mechanisms. In other terms,
unknown intron transmissions could have occurred
in P. bursaria (Hoshina and Imamura, 2009b).
This study examined the sequence, structure, and
phylogenetic relationship of the Chlorella sp. T-24
-5 intron.

MATERIALS AND METHODS

Structure prediction

A secondary structure diagram of the Chlo-
rella sp. T-24-5 intron (EU281549) was prepared
according to previously reported models (e.g.
Lehnert et al., 1996; Haugen et al., 2002). The
structure of the central catalytic intron core (e.g.
from P3 to P7) was solved previously; the remain-
ing helices, predicted using the Mfold (Mathews et
1999; Zuker, 2003) web server (http://
mfold.rna.albany.edu/?q=mfold), were subsequent-

al.,
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ly appended to the core.

Phylogenetic analyses

Intron sequences were aligned through juxta-
position, taking into account the secondary struc-
tures. Although some unalignable regions re-
mained between ingroup and outgroup (fungal
L2449 introns) taxa, this study emphasized the
alignment accuracy between ingroup taxa. A total
of 154
informative) were selected for IC intron analysis.

aligned positions (138 parsimony-
These selected positions were limited conserved
base paring elements P3 to P7 and the compara-
tively conserved base paring elements (determined
in this study) of P.2.1, P5a, P5b, P8, P9, and P9.1.
The sequence alignments are available from the
author upon request.

Two phylogenetic trees were constructed

ucuecaccufucea
........... ]mm
AGACUGGG ,GCUC

A A

al. (1999) and this study. The replicat-
ed sequence —TACTTTGAGTAA—
is in bold. P1 and P10 are pairing
exon segments constructing helices P1
and P10 in the secondary structure.
The arrowhead indicates the S651
insertion position. B. Structure dia-
gram of the intron. Capital letters
represent the sequence of the intron;
lower case letters indicate flanking
exon sequences. Conserved sequence
elements P, Q, R and S are shaded.
Arrows point to the 5° and 3’ splice
sites.

using the p-distance neighbor-joining (NJ) method
in MEGA 5 (Tamura et al. 2011) and the maxi-
mum likelihood (ML) method in PAUP 4.0b10
(Sinauer Associates, MA). Based on the Akaike’s
Information Criterion, the best-fit evolutionary
model for ML analysis was determined via Model-
test 3.7 (Posada and Crandall, 1998), which select-
ed the TrN + I + G evolutionary model with the
following parameters: substitution-rate matrix of
AC =1, AG = 25291, AT=1,CG =1, CT =
4.0889, and GT = 1; proportion of sites assumed to
be invariable = 0.0522; rates for variable sites as-
sumed to follow a gamma distribution with shape
parameter = 0.7832; and number of rate categories
= 4. With these settings, a heuristic search was
performed using the neighbor-joining tree as the
starting tree and a nearest-neighbor interchange
swapping algorithm. Bootstrap probabilities were
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100 intron annotation presented here.
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computed for 1000 (NJ) and 100 (ML) replicates
with these settings.

RESULTS AND DISCUSSION

A large insertion in a nuclear rRNA gene is
generally categorized as a group I intron. The in-
tron sequence annotated by Vorobyev et al. (2009)
deviates from the fundamental rules for group I
introns; that is, the last exon nucleotide (insertion
point) is T (U) and the last intron nucleotide is G
(Burke et al., 1987; Lambowitz and Belfort, 1993)
(Fig. 1A). Upon closer inspection of the insertion,
the same twelve-nucleotide sequences,
TACTTTGAGTAA—, was found flanking the
insertion. This sequence repeat did not follow the
correct intron annotation by Vorobyev et al.
(2009). An annotation pattern was highlighted
compared to some Chlorella IDNA sequences. It is
possible that the intron started with —
TACTTTGAGTAA— and ended before the se-
cond —TACTTTGAGTAA— (intron sequence
length of 553 nucleotides) since this annotation
follows the fundamental rules for group I introns,
as discussed above (Fig. 1A). Under this annota-
tion, there was no gap when compared to other
chlorellacean exon sequences (Fig. 2). The exon

~ A~ A~~~

........ G
AAAAAAAA G

sequence of M. reisseri is exclud-
ed. Differences from the upper-
most variant are shown by nucle-
otide, identical nucleotides by a
dot, and a dash donates a missing
nucleotides. The arrows indicate
start and end points of the intron
(SSU rDNA: <1..172,726..>857,
Intron: 173..725).

sequence (having removed the first four nucleo-
tides [nucleotide numbers 1-4] and the last nucleo-
tide [857]), which is 299 nucleotides in length,
differed from some Chlorella (including C. varia-
bilis) and Micractinium species by one transition,
and differed from M. reisseri by one transition and
one transversion.

Figure 1B shows the secondary structure
diagram of the intron. It was constructed by tracing
the well-known core region (as a ribozyme) and
adding physically folded peripheral loops. The
structure contained base paring helices P1-P10.
The extended P5 helix is typical for IC introns.
The PI helix was constructed with a 5’ flanking
exon sequence to compensate for the internal guide
sequence (IGS). Similarly, the P10 helix was con-
structed with a 3’ flanking exon sequence. These
helices play an important role in excising the in-
tron from rRNA (Cech, 1990; Suh et al., 1999).
These results demonstrated that the above annota-
tion is more reasonable. Therefore, the presumable
insertion position is ten nucleotides upstream from
that of M. reisseri (S651) (Fig. 1A). This insertion
position has never been reported as an intron inser-
tion site, and this study tentatively proposes the
position to be S641, compared to Escherichia coli
rRNA (the numbering reflects their homologous
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positions in the E. coli TRNA gene; S = SSU
rRNA). The intron has characteristics of an ex-
tended, degenerative P9.1 helix and a long P9.2b
(P9.2b is the original name in this study). The area
similar to the viral intron (Vorobyev et al., 2009)
corresponds to helices P4 and PS5, although it does
not have a structurally distinctive feature.

Surprisingly, a BLAST search identified
trebouxiophytes with similar introns, although
Vorobyev et al. (2009) did not identify any signifi-
cantly similar introns. These sequences have been
published recently (Luo et al., 2010; Pazoutova et
al., 2010; Krienitz and Bock, 2011). This study
examined these sequences; the annotation results
are shown in Figs. 3A and B. The introns were
inserted in the same position (S641), and the repeat
sequences were commonly found at the intron
heads and 3’ flanking exon sequences, although
the lengths of the repeat sequences varied.

The phylogenetic relationships of IC introns
were determined via NJ and ML analyses. When
multiple parameters are expected to estimate high-
ly associated variances for short alignment data
(i.e. short and highly divergent sequences like this
intron alignment), the parameter-rich ML analyses
may give incorrect topologies (Nei et al., 1998).
The “simple” models such as the single parameter

peats lying at the head of the
intron and after the insertion
are in bold. B. Structure pre-
dictions for the introns; P1 and
P10 pairing segments are only
shown. Capital letters represent
the sequence of the intron;
lower case letters indicate
flanking exon sequences. Ar-
rows point to the 5’ and 3’
splice sites.
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NJ method are potentially useful for these cases
(Bruno and Halpern, 1999; Piontkivska, 2004).
Most of previous works used NJ method to con-
struct the phylogenetic tree of introns
(Bhattacharya et al., 2005; Haugen et al., 2004b;
Nikoh and Fukatsu, 2001). By contrast, some liter-
atures indicated the superiority of ML method with
appropriate parameters (Holder and Lewis, 2003;
Som, 2009). The present study, therefore, shows
both simple NJ and parameter-rich ML trees (Figs.
4A and B). The trees were rooted with fungal
L2449 introns that have been indicated the introns
with properties intermediate between IC and IE
(Hoshina and Imamura, 2009b). Topologies of NJ
and ML trees were somewhat different from each
other. In NJ, IC introns were diverged into S516
introns of pelagophytes and rhodophytes and the
others (Clade A). ML tree indicated fugal and
green algal S1506 introns diverged one by one,
and the others (Clade B) involved the S516 in-
trons. These S1506 introns were scattered in NJ
tree. Bootstrap supports for the branches in Clade
A (NJ) or Clade B (ML) were basically low. Clade
C was indicated by both analyses, but bootstrap
values of ML was below 50%.

Subgroup IC intron analyses have been ad-
vanced with focus on fungal rDNA introns. In fun-
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Fig. 4. Phylogenetic trees of selected IC introns. The numerals at each node are bootstrap probabilities of NJ/ME
(above the node) and ML/MP (below the node) analyses; only values with >50% support are shown. Three clades
are named A, B and C (see text). The letters in brackets indicate taxonomic affiliations: V¢, Chlorophyceae; Vt,
Trebouxiophyceae; Vu, Ulvophyceae; Vz, Zygnemophyceae; A, ascomycetes; C, ciliates; P, pelagophytes; R,
rhodophytes; S, plasmodial slime molds. Inserted positions are given on the right side of thick vertical bars or after
brackets. A. P-distance neighbor-joining (NJ) tree. B. Maximum likelihood (ML) tree using the TrN + I + G evolu-
tionary model.
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Fig. 4—continued.

gal intron phylogeny, introns are separated into
intron group that share an insertion site (position
family), although relationships of those groups are
unclear (e.g. Bhattacharya et al. 2005). There may
be only one phylogenetic study covering compre-

hensive green algal IC introns, where defined
groups were hardly indicated (Hoshina and
Imamura, 2008b). The present study also could not
resolve this problem. Perhaps, irregular evolution-

ary events have occurred among the IC introns
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such as transpositional intron copy within a ge-
nome seen in subgroup IE introns (Hoshina and
Imamura, 2009b). Indeed, some mildly related
introns of single species (C. variabilis and Dictyo-
chloris pulchra Deason and Herndon) can be seen
in Clade C.

Although phylogenetic relationships of the
introns in Clade A (Fig. 4A) or Clade B (Fig. 4B)
are unclear, the monophyly of the introns sharing
S641 insertion site are supported with higher or
moderate bootstrap values. Whereas, S641 introns
have a tenuous connection with viral introns, alt-
hough the alignment data set used in the phyloge-
netic analyses includes regions P4, P5, and 5’ side
sequence of P5a and P5b. Also, S641 introns and
the introns of C. variabilis were not phylogenet-
ically related.

With the genome analyses by Blanc et al.
(2010), Chlorella variabilis (46.2 Mb) became the
first genome sequenced species in the Tre-
bouxiophyceae. This study revealed surprising
observations with respect to genes involved in cell
wall metabolism. The Chlorella cell wall contains
chitin and chitosan. These genes were derived
from CvV and are not related to those of higher
plants (Blanc et al., 2010). Thus, it is not surpris-
ing if the viral intron was transferred into Chlorel-
la genome.

The P4 and P5a, b and ¢ helices of the Chlo-
rella sp. T-24-5 intron are similar to those of CvV.
Approximately 70% of the sequences are identical
to their P5a, b and c helices (comparatively varia-
ble region). However, the monophyletic relation-
ship between them could not be determined from
this study (Figs. 4A and B). To determine whether
CvV truly mediates intron transfer requires further
investigation.

This study identified more reasonable inser-
tion position (novel insertion site S641) of Chlo-
rella sp. T-24-5 intron (Fig. 1A), and the intron
constructed a monophyletic clade with those same
insertion positions (Figs. 3A, 3B, 4A and 4B).
Such a close relationship between introns inserted

at the same site is common (known as a position
family), and is the result of intron spreading mech-
anisms. Introns may spread via homing or reverse
splicing. In homing, the intron encodes a homing
endonuclease (HE) gene at the terminus of a pe-
ripheral helix. HE recognises specific sequences of
double-stranded DNA, 14-40 bp in length, and
then cleaves the target site and inserts the intron.
Reverse splicing is the inverse process of intron
splicing at the RNA level. This pathway also re-
quires between four and six specific nucleotides
upstream of the insertion site, which the intron
recognizes as the optimal site for self-insertion.
Therefore, group I intron movement typically oc-
curs at homologous sites due to these sequence
recognition mechanisms. Consequently, the num-
ber of insertion sites is fairly limited (it is excep-
tional that the insertion sites in green algal IC in-
trons are diverse), and introns at homologous sites
are often more closely related than introns at dif-
ferent sites (for a review, see Haugen et al., 2005).
Namely, the S641 position family can be explained
by either homing or reverse splicing. HE genes
were not found in these S641 introns. The introns
that include the HE gene are a tiny minority, which
were once fixed in the population, the HE genes no
longer have active functions and were ultimately
lost (Goddard and Burt, 1999; Haugen et al.,
2004a). Instead, long sequence insertions (>50
nucleotides) at peripheral helices, as seen in P9.1
of the Chlorella sp. T-24-5 intron, can be regarded
as HE gene remnants (Haugen et al., 2004a).
Meanwhile, the origin of the S641 introns
remains an important question. Members of the
S641 position family exhibit extremely strong se-
quence conservation. In the core regions of P, Q, R
and S, and pairing region P3, the S641 introns had
67 invariants and two 75% conserved positions out
of 69 juxtaposed positions (data are not shown).
This indicates that these introns have undergone a
recent, rapid spread (see Wikmark et al., 2007).
The first invasion to position S641 may relate to
the sequence repeat, as shown in Figs. 1A and B.
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Specific twelve-nucleotide-long sequences emerge
stochastically once per 16 Mb (4'%). This is unlike-
ly to be coincidental, and may play an as yet uni-
dentified role in intron invasion. This study could
not determine whether P. bursaria underwent in-
tron spread or invasion to S641.
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