Identification of the starter units for the biosynthesis of blepharismins of the heterotrich ciliate *Blepharisma japonicum*

Koichi YOSHIOKA1, Sohei TOMINAGA1, Yoshiyuki URUMA2, Yoshinosuke USUKI1 and Hideo IIO1 (1Department of Material Science, Graduate School of Science, Osaka City University, 2Department of Materials Science, Yonago National College of Technology)

SUMMARY

The heterotrich ciliate *Blepharisma japonicum* has red pigment blepharismins (BPs). These pigments have been known to have three functions: light perception, chemical defense against predators, and protection against UV radiation. The chemical structures of BPs were shown to be polycyclic (p-hydroxybenzylidene) and benzodianthrone derivatives, respectively. Recently, we reported that the dibenzoperylene quinone moiety of BPs was biosynthesized via the polyketide pathway. This was discovered during our studies of 13C NMR assignment for BP-C by analysing 2D spectra of 13C-enriched samples, which were obtained by feeding experiments using 13C-labeled sodium acetates. As a result of these studies, we hypothesized that the starter unit of BP-C was derived from L-leucine or isovaleryl-CoA, based on its incorporation of 13C-labeled sodium acetate. Polyketide synthases utilize a wide assortment of starter units, such as branched-chain fatty acids and amino acids. In many cases, the nature of a starter unit provides important structural and biological features to the molecule. In this study, we identify that the starter units of biosynthesis of BPs are isovaleryl-CoA and butyryl-CoA, using HPLC and LC/ESI-MS analyses of pigments that were obtained from feeding experiments with L-leucine, sodium butyrate (in excess), and deuterium-labeled L-leucine.